
 Data Streams Implementation
Asynchronous packet flow

Sep 5, 1989

Introduction
Data streams are packets of data that are queued and made available to any
data requester. The difference between a data stream and normal data
acquisition is that a data stream packet may occur at arbitrary times
asynchronous to normal data acquisition. A simple example is data which
comes from a serial port. Another is 720 Hz sampled data collected by a ramp
co-processor. Another is clock event data.

Normal data acquisition is done synchronously, and typically with only a
single value which is collected at 15 Hz. On the other hand, a data stream can
have packets added to it at any time even with varying amounts of data. Data
stream support herein described makes this variable type of data accessible via
a normal data request.

DSTRM system table
The DSTRM table provides for itemization of the various data streams that

are supported. A data stream is identified by an index into this table, just as an
analog channel is identified by an index into the ADATA/ADESC tables. The
format of a DSTRM entry is as follows:

qFlags qType qSize

qPtr

eSize

–

hSize

–

data stream 8-character name

–– ––

The qFlags include a bit (#6) to indicate that at reset time the queue
associated with the data stream should be allocated from dynamic memory.
Another flag bit (#7) indicates that the queue has been initialized. The qType
is a small positive index which gives the type of queue header used, as
different types of data streams may require different queue management. This
index implicitly characterizes the means of queue initialization, packet entry,
and packet extraction. The Size word is the entry size of the packets in the
queue. For variable size packets, this word is zero. (In this case, the first word
of each variable size packet is the size of the packet including the size word.)
The hSize word is the amount of header space needed to support the data
stream itself. It is referred to as the data stream-specific header. The qSize is
the total size of the queue which is used to allocate the queue in the dynamic

Data Streams July 11, 1996 page 2
the queue header. In the case of a dynamically allocated queue, this pointer
points 8 bytes beyond the allocated area to allow for the common form of
dynamic header:

mSize mNext mType

The mSize is the allocated size of the memory block, the mNext is a pointer to
the next block in a chain (when used), and mType is the memory block type
value of $000B for this case. With the qPtr pointing just beyond this header,
the same qType can serve either the dynamic or the static case. This first part
of the DSTRM entry can be accessed using listype #53.

The 8-character data stream name can be used to identify the data stream
mnemonically. It can be accessed using listype #54.

Queue format
The data stream queue format consists of 3 components. The first part is

the same for all data stream queues. Its format is as follows:

qType eSize hOff qSize

total ––

Note that the values are copies of the DSTRM entry with a few exceptions. The
first word is the qType without any flag bits. (This could be changed if the flag
bits are needed, as there aren’t expected to be many queue types.) The hOff is
the sum of the header sizes of the first 2 components and is therefore the
offset to the data stream-specific header. The total longword is the total
number of packets ever written into the queue. For diagnostic purposes, the
queue header can be accessed using listype #52.

The second component of the queue header is the qType-specific header. Its
format for qType=1 is as follows:

IN LIMIT START –

The IN word is the offset to the space for the next entry to be placed into the
queue. The LIMIT word is set to the queue size. The START word is the offset
to the first entry to be placed. It is initialized to point just after the total queue
header.

The third component of the header is specific to the data stream itself. This is

Data Streams July 11, 1996 page 3
nFFull nFEmpty nLastCy rstTime

The first 3 words are diagnostic counts which give the number of times the
clock event hardware fifo was found to be full (and subsequently cleared), the
number of times it was found to be empty, and the number of clock events
found in that fifo the last time it was accessed to copy events into the Clock
Event Queue. The last word is the time stamp associated with cycle reset that
is used to convert the hardware free-running time stamps into ones that are
relative to cycle reset. A Data Access Table entry routine manages this header
component for the Clock Event Queue.

Additional queue header forms can be designed for other queue types and for
other types of data streams.

Data requests
A listype (#50) will be used to access data stream packets. The form of ident

used is as follows:

dsIndx nodelan

dsIndx

node

Both the short and long ident forms are shown. The requester identifies the
data stream index to select the data stream to be accessed. Another listype
(#51) is used to request “old” packets—packets which had been placed into the
queue prior to the time of the request.

The format of the internal pointer that is kept during request processing is as
follows:

dsIndx OUT

1=ExtAnsFlag

Note that the OUT word, which is the offset into the queue of the last entry
extracted is part of the internal pointer and not part of the queue header. This
means that different user requests for the same data stream do not interfere
with each other. This is a principal feature of the data stream approach. The
dsIndx value allows access to the queue header pointer via the DSTRM table
for fulfilling the request. When the ExtAnsFlag=1, the rest of the longword
is a pointer into an external answer fragment buffer kept with the request,
which just refers to the fact that the data has already been delivered from
another node to this node. This last feature is only used for locally initiated
requests and for data server requests, not for ordinary network data requests.

Data Streams July 11, 1996 page 4
packet data from a data stream queue is as follows:

#packets

pSize

packets
of

data

The first word gives the number of packets that are included in the response
data. If it is zero, the queue had nothing in it this time. The second word gives
the packet size. If it is zero, the queue uses a variable packet size, and each
packet of data will begin with a size word, so the user can process them.

When making a request for previously-written packets using listype #51, the
amount of previous packets that can be returned is limited by the size of the
requested #bytes. Such requests might be one-shot requests and indicate a
large buffer. Requests for only future data might typically be repetitive
requests using a moderate size request buffer. A one-shot request to listype
#50 would by definition return no information beyond the packet size.

Settings
One can make a data setting to write a packet into a data stream queue. If

the queue has variable length entries, a size word (=#dataBytes+2) is inserted
ahead of the setting data to form the packet. If the queue has fixed size entries,
the length of the setting data must be a multiple of the packet size to be
accepted. Either listype #50 or #51 can be used to write a packet into a queue.

The routine DSWrite is used to write packet(s) into a data stream queue. It is
declared as follows:

Procedure DSWrite(dsIndx,nBytes: Integer; VAR data: DType);

The dsIndx argument is the index part of the ident in the setting request. The
nBytes word is the number of data bytes, and the data parameter is a pointer
to the array of data bytes of the packet. If the queue uses variable size packets,
only one packet can be written with a single call to DSWrite. Note that in this
case, a size word is not included as the first word of the data array. The size
word is written (with the value nBytes+2) into the queue preceding the
packet data.

Settings should not be used to data stream queues other than those which are
normally written to by a task. Queues which are written to by interrupt

Data Streams July 11, 1996 page 5
Software modularization

Most data stream logic is centralized into the DStream module. The
branch tables indexed by qType are all in this module. This includes routines
which handle queue initialization, read access and write access. Generation of
internal pointers is done as usual by code in the ReqDGenP and PReqDGen
modules.

Data-stream specific code—that used to write into a data stream queue—
knows about the DSTRM table entry format and the first and third components
of the queue header. It does not need to know about the qType-specific header
component.

Variable size packets
As stated above, variable size packets are recorded in the queue using a

size word preceding the data. The size word is sufficient to allow data request
processing of the packets using listype #50. But looking backwards to retrieve
packets written previous to the request, in order to fulfill a listype #51 request,
is quite another matter. In order to make this possible, there is an extra word
in the queue that precedes the size word. This word contains the offset from
the start of the queue header to the previous packet’s size word. This allows
backwards traversal of the queue’s packets. When a variable packet size queue
is initialized, the START word points just beyond any data stream-specific
header. A zero word is placed there, and the IN word points to the next word,
which will become the size word of the first packet placed into the queue. The
extra previous pointer word that precedes the size word is not returned when
packets are delivered in response to a data request.

Data stream-specific header initialization
When a data stream queue is initialized, all data stream-specific header

space is set to zero. If nonzero values need to be entered there, the data
stream-specific code can notice a cleared value and set up any nonzero
initialized values needed.

